Physics

7. Angular Momentum

Rotational motion and conservation of angular momentum

Definitions

Angular Momentum (L)

  • A measure of the amount of rotational motion an object has about a particular axis, measured in kg⋅m²/s
L=r×p\vec{L} = \vec{r} \times \vec{p}

where r\vec{r} is the position vector and p\vec{p} is the linear momentum

Conservation of Angular Momentum

  • When the net external torque acting on a system is zero, the total angular momentum of the system remains constant
L=constant when τ=0\vec{L} = \text{constant when } \sum \vec{\tau} = 0

 

Derivations

starting with the definition of angular momentum

L=r×p\vec{L} = \vec{r} \times \vec{p}

for a particle with momentum p=mv\vec{p} = m\vec{v} and since v=ωr\vec{v} = \omega \vec{r}

L=r×(mv)=m(r×v)=mr2ω\vec{L} = \vec{r} \times (m \vec{v}) = m(\vec{r} \times \vec{v}) = m \vec{r}^2 \omega

for a rotating rigid body, the total angular momentum is given by

L=Iω\vec{L} = I \omega

taking the time derivative of angular momentum

dLdt=drdt×p+r×dpdt\dfrac{d\vec{L}}{dt} = \dfrac{d\vec{r}}{dt} \times \vec{p} + \vec{r} \times \dfrac{d\vec{p}}{dt}

assuming r\vec{r} is constant (or drdt\dfrac{d\vec{r}}{dt} is parallel to p\vec{p}), and knowing that dpdt=F\dfrac{d\vec{p}}{dt} = \vec{F} from Newton's second law

dLdt=r×F=τ\dfrac{d\vec{L}}{dt} = \vec{r} \times \vec{F} = \vec{\tau}

therefore, the rate of change of angular momentum equals the net torque

when the net external torque is zero

τ=0\sum \vec{\tau} = 0

then

dLdt=0\dfrac{d\vec{L}}{dt} = 0

and angular momentum is conserved

L=constant\vec{L} = \text{constant}

 

Useful Equations

L=r×p,L=Iω\vec{L} = \vec{r} \times \vec{p}, \quad \vec{L} = I \omega dLdt=τ\dfrac{d\vec{L}}{dt} = \vec{\tau}

 

Example 1

A point mass of 2 kg moves in a circle of radius 3 m with angular velocity 4 rad/s. What is its angular momentum?

Answer

Using L=IωL = I\omega where I=mr2I = mr^2 for a point mass

L=mr2ω=2(3)2(4)L = mr^2\omega = 2(3)^2(4) L=2(9)(4)=72 kg⋅m2/sL = 2(9)(4) = 72 \text{ kg⋅m}^2\text{/s}

 

Example 2

A figure skater with moment of inertia 4 kg⋅m² spins at 2 rad/s. She pulls her arms in, reducing her moment of inertia to 2 kg⋅m². What is her new angular velocity?

Answer

Using conservation of angular momentum Li=LfL_i = L_f

I1ω1=I2ω2I_1\omega_1 = I_2\omega_2 4(2)=2ω24(2) = 2\omega_2 ω2=82=4 rad/s\omega_2 = \frac{8}{2} = 4 \text{ rad/s}