Physics
Level 1/Gravitation

6. Circular Orbits

-----

Derivations

Cetripetal acceleration must equal force due to gravity

Fc=mω2r,Fg=GMmr2F_c = m\omega ^2 r, \quad \quad F_g = \dfrac{GMm}{r^2}

equating these

mω2r=GMmr2m\omega^2 r = \dfrac{GMm}{r^2}

simplify

ω2=GMr3\omega^2 = \dfrac{GM}{r^3}

 

Angular Velocity

ω=GMr3\omega = \sqrt{\dfrac{GM}{r^3}}

 

Linear Velocity

we sub ω=vr\omega = \dfrac{v}{r}

v2r2=GMr3\dfrac{v^2}{r^2} = \dfrac{GM}{r^3}

simplify

v=GMrv = \sqrt{\dfrac{GM}{r}}

 

Useful Equations

ω=GMr3,v=GMr\omega = \sqrt{\dfrac{GM}{r^3}}, \quad \quad v = \sqrt{\dfrac{GM}{r}}